درایو یا کانورتر فرکانس و یا کنترل کننده دور موتور برای تنظیم دور الکتروموتورهای Ac استفاده میگردد.

درایوها وظیفه “ کنترل دور موتور ” را بر عهده دارند. درایوها قادرند دور موتور را از صفر تا چندین برابر دور نامی موتور و بطور پیوسته تغییر دهند.

تنظیم دور در الکتروموتورها علاوه بر منعطف نمودن پروسه های صنعتی ، در کاربردهای زیادی منجر به صرفه جوئی انرژی هم میگردد. علاوه بر آن درایوها جریان راه اندازی دریافتی از شبکه را به میزان زیادی کاهش میدهند. بطوریکه این جریان خیلی کمتر از جریان اسمی موتور است.

درایوها میتوانند موتور را بطور نرم و کاملا کنترل شده استارت و استپ نمایند. زمان استارت و استپ را میتوان بدقت تنظیم نمود. این زمانها میتوانند کسری از ثانیه و یا صدها دقیقه باشد. توانائی درایو در استارت و استپ نرم موجب کاهش قابل ملاحظه تنش های مکانیکی در کوپلینگ ها و سایر ادوات دوار میگردد.

اولین وسیله تبدیل انرژی الکتریکی به انرژی مکانیکی موتورهای DC بودند. موتورهای DC با وجود مزایایی چون کنترل آسان ، سریع و دقیق گشتاور و همچنین پاسخ بسیار سریع دینامیکی برای تغییرات سرعت ، معایب زیر رادارند:

  1. نیاز به تعمیر و نگهداری مکرر
  2. قیمت بالا
  3. نیاز به انکودریاتاکومتر برای فیدبک سرعت

 

امروزه با توجه به پیشرفت تکنولوژی موتورهای الکتریکی AC و مزایایی از قبیل :
  1. اندازه کوچکتر
  2. قدرت بیشتر در مقایسه با موتورهای DC هم اندازه
  3. طراحی ساده و قیمت ارزان
  4. سبک و مقاوم در برابر ضربه

 

کاربرد موتورهای AC در صنعت روبه فزون است بطوریکه در ۷۰ تا ۸۰ درصد کاربردهای صنعتی از موتورهای AC استفاده می شود.

همزمان با پیشرفت و فزونی کاربرد موتورهای AC ، تکنولوژی درایوی AC نیز دستخوش تغییرات شگرفی شده اند بطوریکه دریواهای AC قابلیت موتورهای AC را تکمیل کرده اند در کاربردهای صنعتی غالباً می خواهیم که موتورها در سرعت و گشتاور دلخواهمان کارکنند ، بنابراین برای کنترل سرعت و گشتاور موتور از درایو استفاده می کنیم .

این درایوها تجهیزاتی هستند از قطعات الکترونیکی مانند : تریستورها ، IGBT و … ساخته شده اند که از آنها برای کنترل ولتاژ یا کنترل فرکانس استفاده می شود. علاوه براین در کاردبرهایی مانند جرثقیل ها ، آسانسورها و ……… که عدم وجود ضربه در راه اندازی و توقف موتور از اهمیت ویژه ای برخورداراست، استفاده از درایو اجتناب ناپذیر می شود .

مقایسه عملکرد سافت استارتر با کنترل دور ها

الف-راه انداز نرم:

  1. راه انداز نرم درصنعت برای راه اندازی الکتروموتور بکار میرود و دراین حالت بیشترین جریان راه اندازی حدود ۲٫۵ برابرجریان حالت عادی موتوراست محنی راه اندازی با یک شیب مناسب وقابل انتخاب است.
  2. در راه اندازنرم ازکلیدهای استاتیکی(SSR)استفاده میشود که درتوانهای پایین ازترایاک و در توانهای بالا ازیک جفت تایستور بصورت معکوس وموازی استفاده میشود
  3. در راه انداز نرم تغییر ولتاژ وجود دارد و در واقع با کنترل ولتاژسینوسی ورودی درهردو نیم سیکل مثبت و منفی ولتاژخروجی باهمان فرکانس ورودی میشود.
  4. از راه انداز نرم میشود بعنوان کنترل دورهم استفاده کرد ولی درصنعت استفاده نمیشود،اما(دیمر،،کنترل نورلامپ،،کنترل دورپنکه،،،)یک راه اندازنرم تک فازاست که بعنوان کنترل دور استاتیکی استفاده میشود
  5. از یک راه اندازنرم میشود تعدادزیادی موتور را با ایجادیک مدارفرمان مناسب راه اندازی کرد مثلا تعداد۱۰ دستگاه موتور یا بیشتر را میشود با یک راه اندازنرم روشن کرد.
  6. در راه اندازنرم امکان افزایش دور موتور بیشتراز دور نامی وجودندارد
  7. مدار ستاره مثلث یا همان مداردوضرب هم یک راه اندازنرم است اما بصورت کنتاکتوری و بیشترین جریان راه انداز حدود چهاربرابراست است ومنحنی راه انداز بصورت جهشی میباشد و غیرقابل انتخاب.

 

«کلیدهای استاتیکی یاهمان SSR درجریانهای مختلف دربازار وجود دارد»

ب-اینورتر یا کنترل دور

  1. راه اندازی الکتروموتور با بیشترین جریان راه اندازی حدود جریان عادی موتور بایک منحنی تقریباخطی قابل انتخاب
  2. کنترل دور بهترین راه اندازنرم موتور است ولی باقیمتی بیش ازچهاربرابر راه اندازنرم یاهمان سافت استارت
  3. درصنعت از اینور یا کنترل دور بطور عموم برای موتورهایی که کنترل سرعت لازمست استفاده میشود
  4. تغیرات دور موتور در اینورتر با تغییرفرکانس ایجادمیشود لذا امکان افرایش فرکانس خروجی تا چندین برابرفرکانس ورودی وجود دارد
  5. در استفاده از کنترل دور امکان افزایش دورموتوربیشترازدورنامی وجودداردباافزایش فرکانس ولتاژ خروجی دور موتورافرایش می یابد
  6. بطور معمول در اینورتر ها از ترانزیستورهای IGBT درقدرت های بالااستفاده میشود ودرقدرت های پایین ازترانزیستورهای MOSFET هم قدرت استفاده میشود.کنترل دور اشنایدر

 

در مجموع سافت استارتر همانطور که از نامش پیداست تنها در هنگام راه اندازی یک الکتروموتور کاربرد دارد. الکتروموتورها به دلیل کشیدن جریان ۶ تا ۸ برابر جریان نامی در هنگام راه اندازی صدمات زیادی می بینند بطوریکه عمده استهلاک الکتروموتورها در هنگام راه اندازی می باشد. بوسیله سافت استارتر راه اندازی از طریق افزایش کنترل شده فرکانس یا ولتاژ انجام می گیرد و با این کار Energy Saving نیز صورت می گیرد.

اینورتر محدود به زمان راه اندازی نمی باشد و در هر لحظه می توان بوسیله سیگنالهای کنترلی که معمولا ۴~۲۰ mA می باشد سرعت الکتروموتور را کنترل نمود

اینورتر قابلیت های بسیار زیادی دارد از قبیل : راه اندازی نرم موتور، چپگرد راستگرد کردن موتور وتغییر دور موتور.

والبته قیمت بالاتری نیز دارد. حال آنکه سافت استارتر فقط برای راه اندازی نرم موتور استفاده میشه.

روشهای متداول کنترل سرعت و گشتاور موتورهای DC با استفاده از درایوهای: DC

موتورهای DC دو محدوده کنترل سرعت دارند:

ناحیه اول : با ثابت نگه داشتن جریان تحریک و تغییر ولتاژ آرمیچر از صفر تا مقدار نامی ، سرعت از صفر تا مقدار نامی تغییر می کند در این محدوده گشتاور ثابت می ماند.

ناحیه دوم : با ثابت نگه داشتن ولتاژ آرمیچر و کاهش جریان تحریک می توان به سرعتهایی بیشتر از سرعت نامی دست یافت در این حالت با افزایش سرعت ، گشتاور کاهش می یابد ، این محل تضعیف میدان (field weakening) نامیده می شود.

در محدوده گشتاور ثابت ، با افزایش سرعت توان به صورت خطی افزایش می یابد، بعداز سرعت نامی ، توان ثابت می ماند و گشتاور به صورت نمایی کاهش می یابد.

بنابراین در درایورهای DC با کنترل متغیرهای حقیقی جریان تحریک و ولتاژ آرمیچر ، سرعت و گشتاور را کنترل میکنند. با بهره گیری از عملکرد درایوهای DC ، تکنولوژی درایوهای AC توسعه پیدا کرد، و روشهای کنترل اسکالر ، کنترل برداری و کنترل مستقیم گشتاور معرفی شدند.

روش کنترل اسکالر:

این روش را درصنعت با عناوینی نظیر مدولاسیون عرض پالس (PWM) ، کنترل فرکانس V/F یا VVVF می شناسند .

نخست ولتاژ AC به ولتاژ DC تبدیل شده سپس بوسیله مدولاتور، دنباله پالسی از ولتاژ با فرکانس متغیر به موتور ارسال می شود.

در این روش مقدار V/F ثابت است بنابراین با افزایش فرکانس ، ولتاژ افزایش می یابد و در نهایت همانطوری که مشاهده می شود ، در این حالت کنترلی روی گشتاور موتور وجود ندارد و تغییرهای کنترلی ولتاژ و فرکانس هستند که بطور غیر مستقیم موتور را کنترل می کنند به علت عدم استفاده از فیدیک ، کنترلی روی موفقیت یا سرعت شافت موتور وجود ندارد همچنین استفاده از مدولاتور باعث ایجاد تاخیر در پاسخ به گشتاور به سرعت می شود.

روش کنترل برداری شار:

برای نزدیک شدن به الگویی نظیر درایوهای DC ، متغیرهای کنترلی در موتورهای القایی باید حقیقی باشند در روش اسکالر ، متغیرهای کنترلی غیر حقیقی هستند در صورتی که در این روش سعی بر آن شده تا متغیرهای حقیقی موتور (شار و گشتاور موتور) کنترل شود.

برای کنترل بردار شار و گشتاور موتور، جریان موتور باید قابل کنترل باشد اما در این موتورها کنترل سیستمی روی جریان موتور وجود ندارد. از طرفی جریان موتور تابعی ازجریان استاتور است که بنابراین با استفاده از محاسبات ریاضی پیچیده با توجه به وجود این رابطه بین جریان موتور و جریان استاتور ، شار موتور قابل کنترل هستند در ضمن با استفاده از فیدیک ، می توان موقعیت و سرعت موتور را کنترل کرد. با وجود دقت درسرعت و پاسخ سریع به تغییرات گشتاور ، احتیاج به فیدبک و مدولاتور از معایب این درایوها است.کنترل دور اشنایدر

 

روش کنترل مستقیم گشتاور (DTC )

کنترل مستقیم گشتاور یا DTC پیشرفته ترین تکنولوژی کنترل موتورهای AC است که توسط شرکت ABB ارائه شده است این تکنولوژی جایگزین روشهای متداول مانند روش اسکالر و کنترل برداری شار در حلقه باز و بسته شده است.

اساس کار DTC بر پایه تئوری کنترل جهت میدان موتورهای القایی بنا شده است شار استاتور و گشتاور ، تغییرهای کنترلی DTC هستند ، محاسبه وضعیت موتور ، بوسیله یک سیگنال پروسسور دیجیتال (DSP ) سرعت بالا انجام می شود بطوریکه این محاسبات در مدل نرم افزاری موتور ۴۰۰۰۰ بار در ثاینه صورت می پذیرد . با توجه سرعت بالای محاسبات و مقایسه مقادیر واقعی با مقادیر مرجع هر عمل سویچینگ جداگانه بررسی می شود و هنگام تغییرات دینامیک مانند بارهای ناگهانی عمل سویچینگ بهینه می شود.

 

چرا DTC ؟

در این روش علاوه بر اینکه متغیرهای کنترلی ، حقیقی می باشند پردازش نرم افزاری بسیار سریع و عدم نیاز به انکودر و مدولاتور قابل توجه است.

ویژگیهای درایو با پاسخ گشتاور سریع حدود ۱۰ برابر سریعتر از درایور DC و سایر درایوهای AC است. دقت سرعت دینامیکی در این درایوها ۸ برابر بهتر از یک درایو AC می باشد.

 

مزایای کنترل سیستم گشتاور (DTC) :
  1. پاسخ سریع به تغییرات گشتاور : در لحظات گذرای بار ، زمان افت سرعت کاهش می یابد و در نتیجه پروسه بهتر کنترل شده و محصولات باکیفیت بالاتر عرضه می شوند.
  2. کنترل گشتاور در فرکانس پایین : این مزیت بخصوص در کاربردهایی چون جرثقیل ها و آسانسورها که بار به راه اندازی و توقف منظم و نرم نیاز دارد، قابل توجه می باشد.
  3. گشتاور خطی : افزایش گشتاور بصورت خطی در کاربردهایی چون Winder
  4. دقت سرعت دینامیک: بعد از تغییر ناگهانی بار ، موتور می تواند با سرعت قابل ملاحظه ای به حالت پایدار برگردد.

 

ترمز الکتریکی

هدف این تکنولوژی ارائه راه کارهای عملی برای کاهش انرژی تلف شده در عمل ترمز گیری و برگشت این انرژی به صورت الکتریکی به شبکه است.

ناحیه های چهار گانه سرعت و گشتاور

کاربرد درایو براساس سرعت و گشتاور به سه دسته اصلی تقسیم می شود:

  1. بهترین کاربرد مشترک درایوهای AC در ناحیه I و III است در این ناحیه سرعت و گشتاور هم جهت هستند و جهت توان از داریو به موتور است ( مانند فن ، پمپ)
  2. ناحیه II در این حالت جهت توان از درایو به موتور ، یا برعکس است . در صنایع زیادی برای توقف اضطراری ماشینها ازاین ناحیه کاربرد دارد.
  3. ناحیه IV : آسانسورها و جرثقیل از این کاربردها هستند و بعضی از ماشینهای دیگر مانند برش ، خم ، پیچش و دستگاه تست موتور که نیاز به تکرار سرعت و تغییر گشتاور دارند در این ناحیه جهت توان از درایو به موتور و یا برعکس است .
راه کارهای ترمز الکتریکی درایو:

درایوهای AC پیشرفته شامل یکسو ساز خط برای تبدیل ولتاژ AC و DC هستند سپس کنترل دور ولتاژ DC را به ولتاژ AC با فرکانس دلخواه ، برای تغذیه موتور تبدیل می کند

ترمز شار ( Motor flux Braking)

تکنولوژی ترمز شار بر پایه تلفات موتور بنا شده . هنگام ترمزگیری ، شار موتور و در نتیجه جریان مغناطیسی کننده موتور افزایش می یابد با این روش موتور به سرعت از حالت ترمز به حالت موتوری باز می گردد افزایش جریان به معنای افزایش تلفات موتور می باشد و هرچه انرژی ترمز بیشتر باشد تلفات بیشتراست.

ترمز چاپر و ترمز مقاومتی :

درایوهای AC از یکسوساز ۱۸،۱۲،۶ پالس جهت انتقال توان از شبکه به bus- DC استفاده می کنند اگر در ناحیه II و IV جهت توان از موتور به درایو باشد خازن DC شارژ شده و ولتاژ bus- DC افزایش می یابد به منظور جلوگیری از افزایش ولتاژ bus- DC دو راه وجود دارد .کنترل دور اشنایدر

  1. کنترل افزایش ولتاژ : در این روش گشتاور ترمز گیری محدود می شود تاسطح ولتاژ ثابت بماند.
  2. ترمز چاپر : به این روش انرژی ترمز به مقاومت Rb ) در شکل شماتیک روش اسکالر) داده شده و به صورت گرما هدر میرود.

ترمز الکتریکی

هنگامی که عمل ترمز گیری صورت می پذیرد موتور درحالت ژنراتوری عمل کرده و انرژی درجهت عکس به جریان می افتد در روش های فوق این انرژی به صورت گرما هدر می رود اما به کمک تکنولوژی ترمز الکتریکی ، انرژی معکوس نخست از AC به DC سپس از DC به AC تبدیل شده و به کمک فیلتر LCL به صورت فاز به خط انتقال برمی گردد.

سازگاری الکترو مغناطیسی (E.M.C ( Electromagnetic complicity 

تمام تجهیزات الکتریکی بنا به کارکرد خود ، تشعشعات الکترومغناطیسی فرکانس بالا و فرکانس پائین تولید می کنند.

EMC بر این اساس بنا شده است که این تشعشعات از حد مجاز خود تجاوز نکند مطابق شکل زیر برای کنترل تشعشعات دو فاکتور مصونیت و میزان تشعشع ، بایستی در نظر گرفته شود.

EMC رنج تا GHZ 400 را شامل می شود و به بخش بالای GHZ 2 )فرکانس بالا) و زیر GHZ 2 )فرکانس پایین) تقسیم می شود . منبع انتشار امواج فرکانس بالا ، مبدل های فرکانس شامل عناصر قدرت با سویچینگ سریع هستند ( مانند( IGBTو منبع انتشار امواج فرکانس پایین ، هارمونیکهای ولتاژ می باشد.

تشعشعات بالای۲ GHZ برای انسان مضرند و بازگشت هارمونیک ها به شبکه آسیب می رساند.

تجهیزات الکتریکی در مقابل فرکانس های پائین و بالای غیر معمول بایستی مصونیت داشته باشند و این فرکانس ها نباید در عملکرد آنها تاثیری داشته باشند.

تشعشع  Emission :

حد نشر فرکانس های بالا (ناشی از سویچینگ سریع تجهیزات قدرت) برای هر وسیله الکتریکی باید قابل قبول باشد تا بر روی عملکرد سایر تجهیزات الکتریکی تاثیری نداشته باشد.

راه کارهای EMC :

بطور معمول درایوها از مصونیت خوبی برخوردارند، مگر اینکه امواج الکترومغناطیس شده از تجهیزات داخلی درایوها بر روی عملکرد سایر قسمتهای درایو تاثیر منفی بگذارند. بنابراین آنچه در طراحی و کاربرد درایوها بایستی مد نظر قرار گیرد، محدود کردن نشر امواج الکترو مغناطیس است .

جلو گیر از نشر( conductive Emission)

  1. استفاده از فیلترینگ RFI برای تداخل فرکانس بالا
  2. استفاده از جرقه گیر در رله ها و کنتاکتورها و شیرها برای کاهش جرقه ای ناشی از سویچینگ
  3. استفاده از حلقه های فریت در نقاط اتصال کابل های قدرت

 

جلو گیری از نشر ناشی از تشعشع Radia ted emission

  1. بکارگیری محفظ فلزی رنگ نشده و بدون خوردگی که تمام صفحات آن به زمین وصل شده و بطور کامل آب بندی شده باشد.
  2. استفاده از کابلهای و سیم های شیلددار و بکار بردن روشهای سیم کشی مناسب برای جلوگیری از تداخل
  3. انتخاب و نصب تجهیزات فرعی ، روشهای صحیح سیم کشی داخلی ، توجه زیاد به مساله ارتینگ و بطور کلی دقت در راهنمای همراه با درایو برای نصب آن

کنترل دور موتور متناوب (AC Drive)

با استفاده از تکنولوژی الکترونیک قدرت یا ادوات کلیدزنی نیم رسانای قدرت، بهره وری و کیفیت فرایندهای صنعتی مدرن بهبود فزاینده ای یافته است. تخمین زده می شود که با استفاده از الکترونیک قدرت، حدود ۱۵ تا ۲۰ درصد امکان صرفه جوئی انرژی الکتریکی وجود دارد.

هم چنین با پیشرفت سریع و کاهش مداوم قیمت ها در عرصه الکترونیک قدرت زمینه برای حضور گسترده آنها در کاربردهای صنعتی، حمل و نقل و حتی خانگی فراهم می گردد.

نیروی محرک بیشتر پمپها، فن ها و یا هر وسیله ای که نیاز به نیروی گرداننده خارجی دارد، معمولاً توسط موتورهای القائی تامین می شود که در دور ثابت کار میکنند. لیکن در سالهای اخیر با پیشرفتهای انجام گرفته در زمینه تکنولوژی الکترونیک قدرت ، استفاده از موتورهای القائی همراه با کنترل کننده دور موتور (AC DRIVE) یا اینورتر رو به گسترش است.

 

فرکانس دور موتور

درایوها وسائلی هستند که توان ورودی با ولتاژ و فرکانس ثابت را به توان خروجی با ولتاژ و فرکانس متغیر تبدیل میکنند. باید توجه کرد که دور یک موتور تابعی از فرکانس منبع تغذیه آن است. به همین جهت یک درایو نخست برق شبکه را به ولتاژ DC تبدیل کرده و سپس آنرا با استفاده از یک کنترل دور مجددا به ولتاژ AC با فرکانس و ولتاژ متغیر تبدیل میکند.

در یک درایو ولتاژ پائین قسمت کنترل دور متشکل از سوئیچهای قدرتی است که با سوئیچ زنی متناوب سیگنال خروجی با فرکانس مورد نظر را تولید می کنند. این کلیدها در سالهای اخیر تغییرات تکنولوژیک زیادی پیدا کرده اند. با ورود سوئیچهای قدرتی مانند IGBT که هم توانایی کار در قدرت های بالا و هم سرعت بالای سوئیچ زنی را توأماً به همراه دارد زمینه برای طراحی درایوهای با قیمت مناسب و کارایی بهتر فراهم شد.

 

مزایای استفاده از کنترل کننده های دور موتورهای الکتریکی:

  1. عمر مفید بالا (به دلیل استفاده از مدارات الکترونیک قدرت)
  2. توانائی درایو در بازگرداندن انرژی مصرفی در ترمزهای مکانیکی و یا مقاومت های الکتریکی به شبکه
  3. کاهش جریان راه انداز کشیده شده از شبکه (جریان راه اندازی کمتر از ۱۰ درصد جریان نامی می شود)
  4. کاهش مصرف انرژی در سیستم های دارای فن (در گذشته با وجود موتور های دور ثابت، کنترل جریان سیال با دمپرها صورت می گرفت)
  5. کاهش تنش های الکتریکی (به دلیل راه اندازی و توقف نرم) و در پی آن کاهش تنش های مکانیکی و این خود باعث کاهش هزینه های تعمیر و نگهداری می شود.
  6. افزایش دامنه تغییرات ممکن برای سرعت موتور نسبت به روش های مکانیکی
  7. اضافه شدن امکانات نرم افزاری برای مدیریت عملکرد کنترل دور

از انواع اینورتر ها نیز می توان به اینورتر اشنایدر الکتریک , اینوونس , دلتا و انکام  اشاره کرد که کاربرد فراوانی در صنعت دارد. 

آرتین کنترل با استفاده از تجربه بیش از ۱۰ سال در صنعت کشور, ارائه دهنده محصولات کنترل دور اشنایدر الکتریک در ایران می باشد